首页> 外文OA文献 >Receiver Design for Non-Linear Satellite Channels: Equalizer Training and Symbol Detection on the Compressed Constellation
【2h】

Receiver Design for Non-Linear Satellite Channels: Equalizer Training and Symbol Detection on the Compressed Constellation

机译:非线性卫星信道的接收机设计:压缩星座图上的均衡器训练和符号检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Because of the small energy available aboard a satellite, the power amplifier must work with a restricted power supply which limits its maximum output power. To ensure a sufficient signal-to-noise power ratio (SNR) at the receiving side, the amplifier must work close to the saturation point. This is power efficient but, unfortunately, adds non-linear distortions in the communication channel.Several algorithms have been proposed to equalize this non-linear channel. The most widely used in the literature is the baseband Volterra filter. Recently, the Echo State Network (ESN), coming from the artificial neural network field, has been shown to perform equally well.To compensate for this channel, both equalizers adapt their coefficients with the help of a training sequence in order to recover the transmitted constellation points. We will show that, the usual detection, based on Euclidean distances, is no longer optimal. The aim of this paper is to first propose a new detection criterion which meets with the Maximum Likelihood (ML) criterion. Secondly, we will propose a modification of the training reference points to improve the performances of these equalizers and make the detection based on Euclidean distances optimal again. This last solution can offer a significant reduction of the Bit Error Rate (BER) without increasing the equalizers complexity. Only the new training reference points must be evaluated.
机译:由于卫星上可用的能量很小,因此功率放大器必须在受限的电源下工作,从而限制了其最大输出功率。为了确保接收侧有足够的信噪功率比(SNR),放大器必须在饱和点附近工作。这是省电的,但是不幸的是,它在通信信道中增加了非线性失真。已经提出了几种算法来均衡该非线性信道。在文献中使用最广泛的是基带Volterra滤波器。最近,来自人工神经网络领域的Echo状态网络(ESN)表现出同样出色的性能。为了补偿该信道,两个均衡器都借助训练序列调整其系数以恢复传输的信号。星座点。我们将显示,基于欧几里得距离的常规检测不再是最优的。本文的目的是首先提出一种符合最大似然(ML)准则的新检测准则。其次,我们将提出对训练参考点的修改,以改善这些均衡器的性能,并使基于欧几里德距离的检测再次达到最佳。最后一种解决方案可以显着降低误码率(BER),而不会增加均衡器的复杂性。仅必须评估新的训练参考点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号